
,8AD-Al 823 R AND D ASSOCIATES ARLINGTON VA F/S 9/2
NEARLY ON LINE SCHEDULING OF MULTIPROCESSOR SYSTEMS WITH MEMORI--ETc(u)

APR 82 T LAI. S SAHNI N0001 -80-C-0650
UNCLASSIFIED TR-82-11 NL'. EEEEEEEIIEE
IIIEIIlM

v z~

of a

so

I If 4

Computer Science Department

136 Lind Hall

Institute of Technology

University of Minnesota

Minneapolis, Minnesota 55455

Nearly On Line Scheduling Of

Multiprocessor Systems With Memories

by

Ten-Hwang Lai and Sartaj Sahni

Technical Report 82-11

April 1982

*Cover design courtesy of Ruth and Jay Leavitt

for p ° ,

Nearly On Line Scheduling Of

Multiprocessor Systems With Memories*

Ten-Hwang Lai and SartaLk Sali

University of Minnesota

Abstract

We show that no multiprocessor system that contains at least one processor with

memory size smaller than at least two other processors can be scheduled nearly

on line to minimize the finish time. An efficient nearly on line algorithm to

minimize C.. is developed for multiprocessor systems that do not satisfy the

preceding requirement. Finally, we review the complexity of some other

scheduling problems for multiprocessor systems with memories.

Kejwords and Phrases

Multiprocessor systems, memories, scheduling, nearly on line, C.., complexity,

algorithm.

* The research reported here was supported, in part, by the Office of Naval

Research under contract N00014-80-C-0650. - -

l~~7 l
0!

j.1

e

.2-

1. Introduction

A uniforrm processor system with memories consists of a set of m, m > 1, pro-

cessors P, I i i!C m. A tuple (si, 1A) is associated with each processor Pi. st is

the speed of Pt and A is its memory size. When/h 1 = p, = ... = A., the processor

system is referred to as a u-nVorm processor syst em. A uniform processor sys-

tem with memories in which s, = sm = .., = sm is also called an identical proces-

sor sys#em u'dh memories. If both s, = ... = sn and A, = pa ... 14 the pro-

cessor system is simply a system of identical processors.

Let J = JJ1, J2 ... , J.J, be a set of n. n 1, independent jobs. With every job,

Jt. a 4-tuple (ti, m", rt, di) is associated. t , t ;! 0, is the processing require-

ment of job Ji. So. a processor with a speed of sy would take /il s, time to com-

pletely run job Ji. mk is Ji's memory reguirem'aent. Jt can be run (or processed)

only on those processors that have a memory size no smaller than mt. rt is Ji's

release time. The processing of Jt cannot begin until time ri. Finally, d is J,'s

due time, This represents the time by which Ji's processing should complete. If

it does not, then Jt is tardy.

A feasible preemptive schedule, S, for job set J on the processor system P =

SP1, P2 P,,, is an assignment of jobs to time slots on the processors such

that:

(a) No job is processed before its release time.

(b) No job is processed by more than one processor at any given time.

(c) No job is assigned to a processor with memory size less than the job's

memory requirement.

(d) No processor processes more than one job at any time.

(e) The total processing assignment for each job equals its processing require-

ment.

If in addition to the above requirements. S is such that each job is pro-

cessed continuously from its start to its finish on the same processor, then S is a
nnpreemptivo schedule. The finish time, ft, of Jt is the time at which the pro-

oessing of Ji is completed. Note that ft is defined relative to a schedule S. The

length or finish time, Cm.(S), of schedule S is the least time by which all jobs

have been processed. So, Cm(S) = maxdftd. The C. problem is that of

.3-

finding a schedule S that minimizes C,.

The lateness, L4, of job Ji in schedule S is fI - d. The maximum lateness,

L .. , of any job in S is maxid!j The L,. problem is hatL of finding t schedule S

with minimum Lm,.

Any algorithm that produces feasible preemptive schedules is called a

schaduhing algorithm. A scheduling algorithm that generates schedules with

minimum C. is an optimal scheduling algorithm. A scheduling algorithm that

generates the schedule from time 0 to time t (for every t) only using information

about jobs released before t is called an on7 LW algorithm. If in addition to

knowning the jobs released before t, the algorithm also needs to know the next

release time (either t or following t), then the algorithm is nearly on line. A

scheduling algorithm that is not nearly on line is off line.

The C,. problem is known to be NP-hard when S is required to be a

nonpreemptive schedule. This is true even for processor systems with m = 2, s,

= s2, /, = /2 and job sets with r, = r 2 = ... = rn [5]. Hence, we shall be con-

cerned primarily with schedules in which preemptions are permitted.

For identical processor systems (i.e., s, = S= -... = sm and 1 = = =

j) there is an off line algorithm with complexity O(nlogrn) that obtains

schedules (if they exist) with a given C. [ii]. Bruno and Gonzalez [4] have

developed an O(mn + nlogn) nearly on line algorithm that obtains optimal

schedules for identical processor systems.

If P is a uniform processor system (i.e., = ... = p.) and all jobs have

the same release time, minimum C,. schedules can be obtained in O(n +

mlogm) time using the algorithm of Gonzalez and Sahni [6]. When the release

time are not necessarily the same, the off line algorithm of Sahni and Cho [12]

may be used to obtain schedules (if they exist) with a given C,. in O(mn +

nlogn) time. If a nearly on line algorithm is desired, the algorithm of [13] is

nearly on line and generates optimal schedules in O(m 2n + mnlogn) time. The

algorithms of [12] and [13] generate schedules with O(mn) preemptions. There

is another nearly on line algorithm for uniform processor systems. This is due

to Labetoulle et al. [8] and generates optimal schedules with O(712) preemptions

-4-

in O(n 2) time.

The problem of scheduling systems of identical processors with memories

has been studied by Kurtra and shen [7] and Lai and Sahni [9]. Kalura and Shen

[7] develop an D(nlogm) (n a m) algorithm tor the C, problem when all jobs

have the same release time. Lai and Sahni [9] consider the L.. problem when

all jobs have the same release time. The algorithm they develop has complexity

0(kn2 + nlogn) where k is the number of distinct due times. Their algorithm can

also be used to solve the C,, problem when the release times are not neces-

sarily the same. When used for this problem, their algorithm is off line and has

the same complexity as for the Lm, problem except that now k is the number of

distinct release times.

The general problem of scheduling systems of uniform processors with

memories has been studied by Lai and Sahni [10]. They obtain linear program-

ming formulations for both the C,= and L,. problems. The proposed algo-

rithms are off line. In addition, they also develop low order polynomial time

algorithms for special classes o processor systems when all jobs have the same

release time.

In this paper, we examine the problem of obtaining nearly on line algo-

rithms for uniform processor systems with memories. We may partition the set

of processors in a processor system into two partitions A and B such that B con-

tains all processors with the least memory and A contains the remaining proces-

sors. I.e., if the memory sizes jul, lAg, IA0 / 4 , and /4 o a five processor system

are 10, 20, 10, 15, and 10, respectively, then B = IPL, P3, P 61 and A = JP,, P41. In

section 2, we show that whenever JAI 2 2, no nearly on line algorithm exists, In

section 3, we develop a fast nearly on line algorithm for the case JAI = 1. When JAI

= 0, the processor system is simply a uniform processor system and a nearly on

line algorithm for such systems already exists [8, 13]. Finally, in section 5 we

review the complexity of some scheduling problems for systems of processors

with memories.

In this section, we show that whenever a uniform processor system contains at

least two processors that have a memory size larger than the smallest memory

size in the system, no nearly on line algorithm is possible.

To get a flavor for the proof, we first establish this result for the processor

system JP1 , Pa, P31 with s, = s= s, and PA = IA2 > pa. Suppose that four jobs
are released at time 0. Their processing times are 1, 1, 3, and 3 respectively.

The memory requirements are A, 11, ,As, and if respectively. The next release
time is 1. The schedule from 0 to I must be constructed without any knowledge

of the jobs to be released at or after time 1. Let us consider two possible

schedules for this time interval. In the first of these, jobs 1 and 2 are the only
jobs scheduled on P1 and P2 from 0 to 1. Jobs 3 and 4 are used to utilize P3 .
The resulting schedule is as in Figure I(a). In the second sched.le (Figure 1(b)),
jobs 1 and 2 are assigned to P to utilize all of PI's capacity from 0 to 1. Jobs 3

and 4 are assigned equally to P2 and 's.

0 1 and 2 1 0 1 and 2 1
P 1 . / I 1 1, ,I f_ / I I /i1Z ~ -

P1 V// // P1V l l I

1 and 2 3 and 4

P2 P2 "/L/ I / /ij P21! l l /

3 and 4 3 and 4

P3 P3

(a) (b)

Note that if only 1 job with processing requirement 1 and memory require-

ment ;&I is released at time 1, then a schedule of length 3 can be obtained from
Figure 1(b). This is optimal. From the schedule of Figure 1(a), we can at best

-8-

obtain a schedule of length 3.5. Furthermore, all schedules of length 3 have the

form of Figure 1(b) from 0 to 1. On the other hand, if two jobs, each with a pro-

cessing requirement of 5 and memory requirement of A,, are released at time 1,

then all schedules having a length or 6 have Lhe form of Figure 1(a) from 0 Lo 1.

This is the optimal length. The best schedule that can be obtained from Figure

1(b) has a length of 8.5.

Since, the nature of the jobs to be released at time 1 is not known in

advance, there is no way to determine the form of the schedule from 0 to 1 in

order to guarantee a schedule with minimum C,.. Hence, there is no nearly on

line algorithm for the processor system constructed above.

Theorem 1: Let fP1 , P2 P,,j. m t 2. be an arbitrary system of m processors

with memory sizes A,, A2 p, and speeds s 1 , s 2 sm. respectively. Let A =

minr4 / 1 ; A = Jj Ip, > A ; and B = Jj =, j. If JAI ; 2, then there is no nearly on

line algorithm that minimizes C., for this processor system.

f ooJ: Without loss of generality, we may assume that 1, 2 r A and 3 e B; s ! s I

& s i for all j, j t A - 11 , 2j; and that s 3 < s for allj, j B. So, P, and P2 are the

two slowest processors with memory larger thanu and P8 is the slowest proces-

sor with memory equal to u.

Let A, = s 2 /s 1 ; A2 = (s1/s) 2 ; and f 1 + (1 + A, + A2)(1 + s 2lsa). Define

the m - 3 jobs Jt, 4 i ! m such that t sif and rm = , Assume that these

jobs are released at time 0. Let R denote the set of remaining jobs released at

or after time 0. Assume that the optimal schedule for R u J I 4 ! i! mi has

C,,, = f. It should be clear that if R contains no job with memory requirement

larger than rninjil, Ai2, then there is no advantage to having a schedule in which

jobs from R are scheduled on P 4, P Pm. So, we may assume that the jobs Ji,

4 i i ! m, in J are scheduled to fully utilize P4, P5 Pm and that P1 , P2. P3 are

fully available for R. Hence, we need only concern ourselves with job set R and

processors P1 . P2, and P3 .

Now suppose that R contains 6jobs with tI = sl, tg = s;, t3 = (I + Al + A)sS,
ts = (1 + Al + AR)s 2 + s, t 5 = [(t 3 + t4)/sS - uIs 1 , and to = [(t+ + t 4)/s 8 - 1)5s.

Assume thatm1 =m =m = m = Min I.JAI,; ms m 4 1; jobs 1, 2, 3, and 4

'M

-7-

are released at 0; and jobs 5 and 6 are released at 1. All schedules with finish

time f have the form given in Figure 2(a).

1 + A 1 + A 2
0 1 f

P1 Jobs 1 and 2 Jobs 5 and 6

P2 Jobs 1 and 2 Jobs 5 and 6

P3 Jobs 3 and 4

(0)

0 1 1 + Al 1 +A 1 + 12 +------- f

Pi Job 1 IJob 2 Job 5 Job 6
P2 Job 4 Job 7

P3 Job 3 Job 4 Job 8

(b)

0 1 + A1 + A 2

P1 Jobs I & 2

P2 Jobs 1 & 2

(c)

Next, suppose that R contains 8 jobs with the first four being as before. Let

A= (1 + 161 + At)s 2/sS and let to = Aes , tO (1 + AO)s 1 , t7 = (1 + As)s2 , and ta =

Ass . Assume that me = min ss1, /iA; me m = =m = u; job 5 is released at

-8-

time 1, and jobs 6, 7. and 8 are released at time 1 + A, + Ae. A minimum Cm"

schedule for this set of 8 jobs is given in Figure 2(b). This schedule has length f.

It is easily verified that there is no schedule for this set of 8 jobs that both has a

flnish Lime of f and in which jobs I and 2 are scheduled as in Figur'e 2(a). To see

this, observe that t 5/s, = be < A1 + Ae and ta/s2 = A2 sI/s 2 = Al < A + A.

Hence, no matter how job 5 is scheduled on P, and P2 from I to I + A, + 42 (Fig-

ure 2(c)), there must be intervals in which both P and P2 are idle. Simultane-

ous idle times on P1 , P 2, and P3 cannot be filled up by jobs 3 and 4 alone

Hence, no matter how jobs 3, 4, and 5 are scheduled on P1, P2 , and P3 from I to

1 + A, + bg (in Figure 2(c)), there must be some idle time. Consequently the

overall schedule length must exceed f.

Since at time 0, there is no way to distinguish between the two job sets of

the previous paragraphs, there is no nearly on line algorithm for the given pro-

cessor system that minimizes C,, .

Wa<2
When JA4 = 0, all processors have the same memory size and the nearly on line

algorithm of Sahni and Cho £13] may be used to minimize Cmu. So, we need only

consider the case JAI = 1. In this case, the m processor system consists of m - 1

processors having the same memory size A and I processor with memory size

larger than p.

Let JP1 , P ... , Pm1 be an m processor system with JAI = 1. Assume that the

processors have been indexed such that s, a sg z ... t s,, and that Pk is the lone

processor with memory size larger than p.. We may arrive at a nearly on line

scheduling algorithm, by first determining how jobs with memory requirement

Larger than p. are to be scheduled.

Suppose that n jobs are to be scheduled and that their release times are r1 ,

rg ... , r., respectively. Let cI, c2, ... , c. be the distinct release times in the mul-

tiset Ir1, r . . . , r, . We assume that a I <c 2 < c3 < ... <c,. Let Ri denote the

met of jobs with release time ct and having memory requirement larger than p.

Let St be the set of jobs with release time c1 and memory requirement . Let T

be the sum of the processing requirements of the jobs in Rt. We shall show that

there is always a minimum C,= schedule in which the jobs in Ri are scheduled

-g--

from Tr to 6 = T + Ti/sk. where -r is as given below:

=maxici, dt-d1 i > 1

b cc+ 1 b ci+1 c ci+2

P1

3 1
2

P
3

P4 3

k Pk _
*

P 4
m

(a) (b)

FAgure 3

Consider any minimum Cma. schedule for the given n jobs. Clearly, all jobs
U U

in v Rt must be scheduled on Pk. Suppose that the jobs in u R are not
'El t 1

scheduled as discussed above. Let r be such that there are no preemptions in

the interval (Jr, (j+1)r) for any j. Further, no ct, i, or di is in the interval (jr,

(J+1)r) for anyj. (Note that r does exist since all values we deal with are rational

numbers.) The time interval 0 to C,. may be divided into intervals of length r.

These intervals will be called r-ntervals. Let a be the least i such that the inter-

val [T4, 6j] has a job not in Ri scheduled on Ph. Let b ae the leftmost r-interval

in [T., 6.] such that the job scheduled on Ph in this interval is not in R.. Let c

-10-

be the leftmost r-interval to the right of [r., d6] such that the job scheduled on

Pt in this interval is from R,. (Note that no job in R, can be scheduled to the

left of [T'., 6. 1.) Figure 3 shows two possible situations for b and c. In the first

(Figure 3(a)), boLh r-intfervals lie beLween Lwo consecutive reledse Limes. In LhIs

case, we merely interchange the scheduling assignments of the two r-intervals.

The resulting schedule satisfies the release time requirements. The second pos-

sibility is that at least one release time falls between the two r-intervals (Figure

3(b)). In this case, a straightforward interchange of the two r-intervals could

result in some jobs being scheduled before their release times. Assume that at

least one of the jobs scheduled in the r-interval c has a release time greater

than ci. In this case, the interchange proceeds as follows. First interchange the

jobs scheduled in the r-intervals b and c on Pt (jobs 1 and 2 of Figure 3(b)). If
job 1 was not previously scheduled in c, no conflict is created and we are done.

If job I was already scheduled in c, a conflict is created. The earlier scheduling

of 1 in c is exchanged with the job scheduled on the same processor in b, i.e., job

3 of Figure 3(b). If job 3 was not already scheduled in c, we are done with the

interchange. If it was, then the earlier scheduling of 3 in c is exchanged with job

4 scheduled on the same processor in b. And so on. This exchanging process is

clearly finite and has the result of producing a new schedule that does not

violate any of the release time requirements,

By continuing in the way described above, the original schedule may be

transformed into another schedule that has the same C,., and in which all jobs

in Rt are scheduled on Pk from ;ri to T + Ti/si, 1 -A i < u. Scheduling jobs in Rt

in this way is easily done on line.

Our nearly on line scheduling algorithm will construct the schedule in u

phases. In phase i, the schedule from ci to ci 1 , 1! i < u, will be constructed. In

phase u, the minimum Cm,, is first computed. Let this value be cu+ 1 . Next, all

remaining jobs are scheduled in the interval [cu, cu+i). The scheduling in phase

I is done by first computing i using equation (i). Next, all jobs released at ct

and having memory requirement larger than 1 are scheduled from ;j to di = T,

+ Tilst on processor k. If 61 L ct+1 , then Pt is not available for additional work

in the interval [ci, c,.,) and the schedule for the remaining processors is

obtained using one phase of the nearly on line algorithm of Sahru and Cho [13].

If 6t < cj,4, then P, is available for further processing from 6 to cj, 1 (Figure

c CP+1 c i S I ci+ 1
PI GI

__ _ _ _ G S2

P 2 2

• 6i

SS k+1 Sk
k II IZRlA S k+2 S k+1

Gk+1 k

Gk+ 2
5k+3 Sk+ 2

(a)
S

* 0 m
m

(b)

F'gure 4

4(a)).

Let GC, 1 ! i m, be m processors with the same memory size. Let o1 (t) be

the speed of G, at time t. JG1, G2 ,Gm is a generalized processor sjstem

(GPS) [12] iff each ai(t) is a nondecreasing function of time and ai(t) > aj+1(t),

1 i <m for all t.

since the remaining jobs to be scheduled in Ic,, ci+1] have the same

memory requirement jA, we may ignore the fact that Pt has a larger memory

size. Hence, scheduling on the processor system of Figure 4(a) is equivalent to

scheduling on the CPS of Figure 4(b). ai(t) for Gi is defined as below (we assume

sm.+ = 0 for convenience):

si [L1 i<k] or [k-irm and dt<ct+i]
a(t) = sj+, kgi<m and c!5t<6, (2)

Suppose that at time cd there are r jobs from vSi that have a nonzero

remaining processing requirement. Index these r jobs 1, 2 r and let vt

denote the remaining processing requirement of job i. We assume that the

indexing was done such that v, ! vg 8 ... > vr. We may determine if all these

jobs can be completed on the GPS of Figure 4(b) by using the following result

from [12].

-12-

Teorem 2 [Sahni and Cho]: Let IG, G2 ... , G.J be a GPS and let ui(t) be the

speed of Gi at time t. Let IJ1 ... J. t be n jobs and let tt be the processing

requirement of job Jt, Assume that t 1 I t 2 ... t t, and that n > m (if n < mwe

may introduce m - n jobs with zero processing requirements). Let Li = t I
Jul

I < m and L. = tl. The given n jobs can be scheduled on the given GPS to

complete by time d iff

fO U a(t)dt ,1 !gk !5n (3)
Jul 0

d Om+

If the vis and the GPS of Figure 4(b) satisfy (3) with f replaced by f , then

all r jobs may be scheduled to complete by ct4 j. If (3) is not satisfied, then we

need to determine the amount wi , tw, !9 i, of job j that is to be scheduled in 'ci,

ow~j]. These wjs can be obtained using the equalizing rule given in [13]. This

rule computes the wLs in such a way that

(c) yJ - u >Wj z V - Wj +I. I < r

(d) L f aj(t) 1! g < m
ja~i ,-t

where = wj,. 1 A q < m (if r < n then set ,=r .uz =... = =O)
Jul

and ., = WJ"
Jult

(e) t (v, - ul) is minimized subjected to the conditions (a) - (d) above for
Jul

every q, 1!9 qc minm, r[.

t ii II I I | I I I I II I i i j

-13-

Note that algorithm EQUAL of [13) computes the uis only for a system of

uniform processors. It is, however, easily modified to do the same for the GPS of

Figure 4(b). Furthermore, lernmas 2.1, 2.2, 2.3. and Theorem 2.1 of [13] hold in

the cuse or a GPS also (Ihough in [13] Lhe proor is provided exphciLly only for a

uniform processor system). This guarantees the success of our u phase schedul-

ing algorithm.

All that remains is the computation of c,+ Tis is done using Theorem 2

with the tis being the remaining processing times of the jobs at time c,. Given

the simple nature of the GPS of Figure 4(b), the least ', 6'=i, such that
81 +V

L' ! f aj (t) dt, 1 :! k !5 m
J=3 0,

is easily computed. The minimum C,,is cu+I = 6u + &M-.

Thc actual schcduling of thc wjs in any intcrval [c1, c+1] may bc donc using

the GPS scheduling algorithm of [12]. Once again, since the GPS of Figure 4(b)

is quite close to being a uniform processor system (see Figure 4(a)), the

scheduling of the uvs may be done in a somewhat simpler manner by extending

the algorithm of Gonzalez and Sahni [6] to the processor system of Figure 4(a).

5. Complexity Isues

Published research on the scheduling of multiprocessor systems with memories

has been exclusively concerned with the scheduling of independent jobs to

minimize either Cra, or L,,, (71, [9], and [10]). When precedence constraints

may exist amongst the jobs, the C., problem is NP-hard even when m = 2, s I =

s2, all jobs require one unit of processing time, and the precedence constraint is

as simple as a set of chains. This follows from the knowledge that the C,, prob-

lem with m = 2, unit processing times, chain precedence, and one resource of

capacity 1 is NP-hard [3]. To see this, observe that when one processor has a

memory size larger than the other (in a 2 processor system), memory is

equivalent to a single resource of size 1 (the job running on the processor with

larger memory is considered to be using the resource while the job running on

the other processor is not using the resource).

-14-

Another NP-hard result is a direct consequence of Blazewicz's [1] result

that when m = 2, s, = s2,a I = pe and a single resource with capacity 1 is avail-

able, the problem of minimizing the mean flow time ((/n)lht) is NP-hard.

From this result, we see that minimizing the mean flow time when m = 2, /A, >

Ag, and s I = s g is NP-hard.

6. Conclusions

We have obtained a sharp boundary between the multiprocessor systems for

which nearly on line scheduling algorithms that minimize Cm" exist and those

for which such algorithms do not exist. A polynomial time nearly on line algo-

rithm to minimize C= on those systems for which this is possible has also been

obtained. Finally, we have pointed out the similarity between multiprocessor

systems with memories and those with a single resource of capacity one.

Si

I

- 15-

1. J Blazewicz, "Mean flow time scheduling under resource constraints," Prel-

iminary Report 19/77, Institute of Control Engineering, Poznan, Poland,

1977.

2. J. Blazewicz. "Scheduling with deadlines and resource constraints," Prelim-

inary Report PR-25/77. Institute of Control Engineering, Poznan, Poland,

1977.

3. J. Blazewicz, JK. Lenstra, and A.H.G. Rinnooy Kan, "Scheduling subject to

resource constraints: Classification and complexity," Report BW-127/80,

Department of Operations Research, Mathematical Center, Amsterdam,

1980.

4. J. Bruno and T. Gonzalez, "A New Algorithm for Preemptive Scheduling of

Trees," JACM, Vol. 27, No. 2, PP. 287-312, 1981.

5. M.R. Garcy and D.S. Johnson, "Computer and intractability, a guide to thc

theory of NP-completeness," W.H. Freeman and Co., San Francisco, 1979.

6. T. Gonzalez and S. sahni, "Preemptive scheduling of uniform processor

sustems," JACM, Vol. 25, 1978, PP. 92-101.

7. D.G. Kafura and V.Y. Shen, "Task scheduling on a multiprocessor system

with independent memories," SICOMP, Vol. 8, No. 1, 1977, PP. 167-187.

8. J. Labetoulle, E.L. Lawler. J.K. Lenstra, and A.H.G. Rinnooy Kan, "Preemptive

scheduling of uniform machines subject to release dates," Report BW99,

Department of Operations Research, Mathematical Center, Armsterdam,

1977.

9. T.H. Lai and S. Sahni, "Preemptive scheduling of a multiprocessor system

with memories to minimize L,.," Report No. 81-20, Computer Science

Dept., University of Minnesota, Minneapolis, 1981.

10. T.H. Lai and S. Sahni, "Preemptive scheduling of uniform processors with

memory," Report No. 82-5, Computer Science Dept., University of Min-

nesota, Minneapolis, 1981.

1I. S. Sahnl, "Preemptive scheduling with due dates," OP RES, Vol. 27, No. 5,

1979, PP. 925-934.

-18-

12. S. Sahni and Y. Cho, "Scheduling independent tasks on a uniform processor

system," JACM, Vol. 27, No. 3, 1980, PP. 550-563.

13. S. Sahni and Y. Cho, "Nearly on line scheduling of a uniform processor sys-

tem with release times," SICOMP, VoL 8, No. 2, 1979, PP. 275-285.

1119CUITY CLASSIFICATION OF THIS PAGE ("oien Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (antd Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Nearly On Line Scheduling Of Multiprocessor Technical Report
Systems With Memories April 1982

6. PERFORMING ORG. REPORT NUMBER

1. AUTHOR(s) 4. CONTRACT OR GRANT NUMER(s)

Ten-Hwang Lai and Sartaj Sahni 100014-80-C-0650

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA A WORK UNIT NUMBERS

Computer Science Department
University of Minnesota
136 T.ind Ha11 2n7 rh.,-r'h St. SE. Mpls. MN 55455

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Department of the Navy April 1982 .
Office of Naval Research 13. NUMBEROF PAGES

Arl[ngton. VA 22217 _"_-_ _

14. MONITORTNG AGENCY NAqE A AODRESS(II different from Controlling Offico) IS. SECURITY CLASS. (of this repot).

UNCLASSIFIED
1SO. DErCL ASSIF ICATION/ DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of thl Reporl)

t?. DISTRIBUTION STATEMENT (of the ebe'oect entored in Block 2. fi different frem Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree aide it neeeeeary end Identity by block nmb)

Multiprocessor systems, memories, scheduling, nearly on line, Cmax*
Complexity, algorithm.

20. ABSTRACT (Continue en revers side if neceeery and Identify by block numabr)

We show that no multiprocessor system that contains at least one processor wit"
memory size smaller than at least two other processors can be scheduled nearly -

on line to minimize the finish time. An efficient nearly on line algorithm to
minimize Cmax is developed for multiprocessor systems that do not satisfy the

preceding requirement. Finally, we review the complexity of some other
scheduling problems for multiprocessor systems with memories.

DD , JAN",, 1473 EDITION OF 1 Nov es iS OsSOLETE
S/N o102.LF F-14-66o1

